This instruction shows how to install TensorFlow on Windows 11 (WSL2, Ubuntu 22.04) with CUDA and cuDNN.
Lod in
Reference: https://codensync.com/blog/2023/11/23/how-to-install-ubuntu-22-04-on-wsl2-on-windows-11/
Install virtual environment management system Miniconda
Run the following command to install the latest 64-bit version of the installer and then clean up after themselves.
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh
After installing, run the following commands initialize for bash and zsh shells:
~/miniconda3/bin/conda init bash
~/miniconda3/bin/conda init zsh
You need to close and re-open the current shell for changes to take effect. First, exit the shell:
exit
Then, run the following command to enter the shell:
ubuntu
Run the following command to verify the installation:
conda --version
Create a virtual environment with Python 3.11
Run this command to create a virtual environment ‘tf’ with python version 3.11
conda create --name tf python=3.11
Activate virtual environment ‘tf’
conda activate tf
There will be a ‘(tf)’ prefix in the command line. If you want to deactivate current virtual environment, run the following command:
conda deactivate
Activate virtual environment ‘tf’, install gcc and g++, install CUDA11.8
conda activate tf
Install gcc and g++
sudo apt update
sudo apt install gcc g++
Run the following commands to download and install CUDA 11.8
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
Install cuDNN 8.6
Install cuDNN 8.6.0.163
pip install nvidia-cudnn-cu11==8.6.0.163
To check the installation location of cudnn:
python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"
Add environment variables
Add environment variables:
# Need to adapt to your cudnn installation location:
export CUDNN_PATH="$HOME/miniconda3/envs/tf/lib/python3.11/site-packages/nvidia/cudnn"
export LD_LIBRARY_PATH="$CUDNN_PATH/lib":"/usr/local/cuda/lib64"
export PATH="$PATH":"/usr/local/cuda/bin"
Check CUDA version:
nvcc --version
Install TensorFlow 2.14.1
Install TensorFlow 2.14.1
pip install tensorflow==2.14.1
Check installation version
pip show tensorflow
Check if GPU acceleration can be enabled:
python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
If you see the following text, the GPU acceleration can be enabled.
[PhysicalDevice(name=’/physical_device:GPU:0′, device_type=’GPU’)]